首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69篇
  免费   1篇
  国内免费   12篇
安全科学   1篇
废物处理   5篇
环保管理   3篇
综合类   13篇
基础理论   8篇
污染及防治   41篇
评价与监测   10篇
灾害及防治   1篇
  2023年   1篇
  2022年   15篇
  2021年   8篇
  2020年   4篇
  2019年   3篇
  2018年   11篇
  2017年   4篇
  2016年   3篇
  2015年   4篇
  2014年   3篇
  2013年   4篇
  2012年   4篇
  2011年   6篇
  2010年   1篇
  2009年   4篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  2004年   1篇
  1998年   1篇
排序方式: 共有82条查询结果,搜索用时 562 毫秒
71.
On-road emission and fuel consumption (FC) levels for Euro III and IV buses fueled on diesel and compressed natural gas (CNG) were compared, and emission and FC characteristics of buses were analyzed based on approximately 28,700 groups of instantaneous data obtained in Beijing using a portable emissions measurement system (PEMS). The experimental results revealed that NOx and PM emissions from CNG buses were decreased by 72.0% and 82.3% respectively, compared with Euro IV diesel buses. Similarly, these emissions were reduced by 75.2% and 96.3% respectively, compared with Euro III diesel buses. In addition, CO2, CO, HC, NOx, PM emissions and FC of Euro IV diesel buses were reduced by 26.4%, 75.2%, 73.6%, 11.4%, 79.1%, and 26.0%, respectively, relative to Euro III diesel buses. The CO2, CO, HC, NOx, PM emissions and FC factors all decreased with bus speed increased, while increased as bus acceleration increased. At the same time, the emission/FC rates as well as the emission/FC factors exhibited a strong positive correlation with the vehicle specific power (VSP). They all were the lowest when VSP < 0, and then rapidly increased as VSP increased. Furthermore, both the emission/FC rates and emission/FC factors were the highest at accelerations, higher at cruise speeds, and the lowest at decelerations for non-idling buses. These results can provide a base reference to further estimate bus emission and FC inventories in Beijing.  相似文献   
72.
The effects of continuously regenerating diesel particulate filter (CRDPF) systems on regulated gaseous emissions, and number-size distribution and mass of particles emanated from a diesel engine have been investigated in this study. Two CRDPF units (CRDPF-1 and CRDPF-2) with di erent specifications were separately retrofitted to the engine running with European steady-state cycle (ESC). An electrical low pressure impactor (ELPI) was used for particle number-size distribution measurement and mass estimation. The conversion/reduction rate (RCR) of hydrocarbons (HC) and carbon monoxide (CO) across CRDPF-1 was 83% and 96.3%, respectively. Similarly, the RCR of HC and CO and across CRDPF-2 was 91.8% and 99.1%, respectively. The number concentration of particles and their concentration peaks; nuclei mode, accumulation mode and total particles; and particle mass were highly reduced with the CRDPF units. The nuclei mode particles at downstream of CRDPF-1 and CRDPF-2 decreased by 99.9% to 100% and 97.8% to 99.8% respectively; and the particle mass reduced by 73% to 92.2% and 35.3% to 72.4%, respectively, depending on the engine conditions. In addition, nuclei mode particles increased with the increasing of engine speed due to the heterogeneous nucleation initiated by the higher exhaust temperature, while accumulation mode particles were higher at higher loads due to the decrease in the air-to-fuel ratio (A/F) at higher loads.  相似文献   
73.
Environmental Science and Pollution Research - Binary composite of zerovalent iron and titanium dioxide (Fe0/TiO2) was synthesized for the catalytic removal of dichlorophene (DCP) in the presence...  相似文献   
74.

The free radicals produced by cigarette smoking are responsible for tissue damage, heart and lung diseases, and carcinogenesis. The effect of tobacco on the central nervous system (CNS) has received increased attention nowadays in research. Therefore, to explore the molecular interaction of cigarette smoke carcinogens (CSC) 4-(methylnitrosamine)-1-(3-pyridyl)-1-butanol (NNAL), 4-(methylnitrosamine)-1-(3-pyridyl)-1-butanone (NNK), and N′-nitrosonornicotine (NNN) with well-known targets of CNS-related disorders, acetylcholinesterase (AChE), and butyrylcholinesterase (BuChE) enzymes, a cascade of the computational study was conducted including molecular docking and molecular dynamics simulations (MDS). The investigated results of NNAL+AChEcomplex, NNK+AChEcomplex, and NNK+BuChEcomplex based on intermolecular energies (?G) were found to ?8.57 kcal/mol, ?8.21 kcal/mol, and ?8.08 kcal/mol, respectively. MDS deviation and fluctuation plots of the NNAL and NNK interaction with AChE and BuChE have shown significant results. Further, Molecular Mechanics Poisson-Boltzmann Surface Area (MM‐PBSA) results shown the best total binding energy (Binding?G) ?87.381 (+/?13.119) kJ/mol during NNK interaction with AChE. Our study suggests that CSC is well capable of altering the normal biomolecular mechanism of CNS; thus, obtained data could be useful to design extensive wet laboratory experimentation to know the effects of CSC on human CNS.

Graphical abstract
  相似文献   
75.
Environmental Science and Pollution Research - The excessive use of pesticides is posing major threats to humans and the environment. However, the environmental exposure and impact of pesticides in...  相似文献   
76.
Environmental Chemistry Letters - Efficient materials for energy storage, in particular for supercapacitors and batteries, are urgently needed in the context of the rapid development of...  相似文献   
77.

The aim of this study was to investigate the lead (Pb)-induced lipid metabolism impairment and its amelioration using plant-based therapeutic interventions. Pb-induced hepatotoxicity can disturb the normal levels of natural antioxidant enzymes including glutathione (GSH) and superoxide dismutase (SOD) exerting a crucial impact on membrane unsaturated fatty acids (FA), hence leading to lipid peroxidation. Furthermore, Pb toxicity can also alter the regulation of various hormones involved in the synthesis of 3-hydroxy-methyl glutaryl CoA (HMG-CoA reductase), leading to an impairment in normal levels of serum cholesterol and other associated conjugated lipid molecules such HDL-cholesterol, LDL-cholesterol and VLDL-cholesterol. In this study, the lipoprotein fractions, cholesterol, triglyceride (TGs) and biomarkers of liver functions were estimated by employing respective assay kits. The levels of antioxidant enzymes, FFAs and HMG-CoA reductase were determined by employing sandwich ELISA method. The administration of PbAc in experimental rats induced a significant disturbance in lipid profile (P < 0.05) accompanying a significant reduction in natural antioxidant defence system (P < 0.05). The significant alteration in the levels of serum antioxidant enzymes can lead to membrane lipid peroxidation that is reflected by a significantly (P < 0.05) high level of serum MDA in PbAc-induced experimental rats. However, the administration of resveratrol proved therapeutically effective in the treatment of Pb toxicity. Overall, the results of this study accompanying histopathological examination had proved the ameliorating effect of resveratrol in Pb-induced lipid metabolism impairment by adopting vitamin C as a standard therapeutic intervention.

  相似文献   
78.
Environmental Science and Pollution Research - The worldwide resurgence of natural dyes in all fields is due to the carcinogenic effects of effluent loads shed by synthetic industries. Coconut coir...  相似文献   
79.
Environmental Science and Pollution Research - Trade openness continues to have the potential to influence many parts of today’s society, including religion, transportation, lifestyle,...  相似文献   
80.

The present work provides an insight into the development of biochemical adaptations in mung beans against ozone (O3) toxicity. The study aims to explore the O3 stress tolerance potential of mung bean genotypes under exogenous application of growth regulators. The seeds of twelve mung bean genotypes were grown in plastic pots under controlled conditions in the glasshouse. Six treatments, control (ambient ozone level 40–45 ppb), ambient O3 with ascorbic acid, ambient ozone with silicic acid, elevated ozone (120 ppb), elevated O3 with ascorbic acid (10 mM), and elevated ozone with silicic acid (0.1 mM) were applied. The O3 fumigation was carried out using an O3 generator. The results revealed that ascorbic acid and silicic acid application decreased the number of plants with foliar O3 injury symptoms in different degrees, i.e., zero, first, second, third, and fourth degrees; whereas 0–4 degree symptoms represent, no symptoms, symptoms occupying?<?1/4, 1/4–1/2, 1/2–3/4, and?>?3/4 of the total foliage area, respectively. Application of ascorbic acid and silicic acid also prevented the plants from the negative effects of O3 in terms of fresh as well as dry matter production, leaf chlorophyll, carotenoids, soluble proteins and ascorbic acid, proline, and malondialdehyde (MDA) contents. Overall, silicic acid application proved more effective in reducing the negative effects of O3 on mung bean genotypes as compared to that of the ascorbic acid. Three mung bean genotypes (NM 20–21, NM-2006, and NM-2016) were identified to have a better adaptive mechanism for O3 toxicity tolerance and may be good candidates for future variety development programs.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号